Scroll to:
SELENIUM IN NANOFORM: TOXICITY AND SAFETY
https://doi.org/10.57256/2949-0715-2022-1-24-32
Abstract
The review is devoted to the toxicity and safety of nanosized forms of selenium. It is shown that in nature selenium exists mainly in the form of selenate (Se6+), selenite (Se4+), selenide (Se2–) and elemental selenium (Se0), while the latter is insoluble in aqueous media, less toxic and biologically inert. In the form of nanosized particles, elemental selenium is not only biocompatible, but also has antitumor and antimicrobial activity.
It has been shown that elemental selenium in the form of nanoparticles can modulate the activity of the antioxidant and detoxification systems. A dose-dependent effect of selenium in nanosized form has been demonstrated. It has been shown that at high concentrations (above 2 mg Se per kg of animal weight) selenium nanoparticles can cause the development of selenium-induced toxicity in mammals.
It has been shown that elemental selenium in the form of nanoparticles can affect immunoregulation, reproductive function, kidney and liver function, modulate the activity of the antioxidant and detoxification systems, and in high concentrations (above 2 mg Se per kg of animal weight) cause the development of selenium-induced toxicity both in mammals and fish. At the same time, for fish, it was shown that selenium nanoparticles are more toxic than inorganic selenium and cause a more acute reaction of the body to exposure to even low concentrations, possibly associated with hyperaccumulation of selenium in tissues, which once again reminds us of the need to take into account the problems of ecotoxicity of selenium nanocomposites.
For citations:
Shurygina I., Dremina N., Trukhan I., Shurygin M. SELENIUM IN NANOFORM: TOXICITY AND SAFETY. Baikal Medical Journal. 2022;1(1):24-32. (In Russ.) https://doi.org/10.57256/2949-0715-2022-1-24-32
The review is devoted to the toxicity and safety of nanosized forms of selenium. It is shown that in nature selenium exists mainly in the form of selenate (Se6+), selenite (Se4+), selenide (Se2–) and elemental selenium (Se0), while the latter is insoluble in aqueous media, less toxic and biologically inert. In the form of nanosized particles, elemental selenium is not only biocompatible, but also has antitumor and antimicrobial activity.
It has been shown that elemental selenium in the form of nanoparticles can modulate the activity of the antioxidant and detoxification systems. A dose-dependent effect of selenium in nanosized form has been demonstrated. It has been shown that at high concentrations (above 2 mg Se per kg of animal weight) selenium nanoparticles can cause the development of selenium-induced toxicity in mammals.
It has been shown that elemental selenium in the form of nanoparticles can affect immunoregulation, reproductive function, kidney and liver function, modulate the activity of the antioxidant and detoxification systems, and in high concentrations (above 2 mg Se per kg of animal weight) cause the development of selenium-induced toxicity both in mammals and fish. At the same time, for fish, it was shown that selenium nanoparticles are more toxic than inorganic selenium and cause a more acute reaction of the body to exposure to even low concentrations, possibly associated with hyperaccumulation of selenium in tissues, which once again reminds us of the need to take into account the problems of ecotoxicity of selenium nanocomposites.
References
1. Chenthamara D., Subramaniam S., Ramakrishnan S.G. et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23:20. https://doi.org/10.1186/s40824-019-0166-x
2. Khan A.U., Khan M., Cho M.H., Khan M.M. Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure. Bioprocess Biosyst Eng. 2020;43(8):1339-1357. https://doi.org/10.1007/s00449-020-02330-8
3. Chaudhary S., Umar A., Mehta S.K. Surface functionalized seleniumnanoparticles for biomedical applications. J Biomed Nanotechnol. 2014;10(10):3004-3042. https://doi.org/10.1166/jbn.2014.1985
4. Shurygina I.A., Shurygin M.G. Selenium nanocomposites – the prospects of application in oncology. Journal of new medical technologies. 2020;27(1):81-86 (In Russian). https://doi.org/10.24411/1609-2163-2020-16517
5. Fadeeva T.V., Shurygina I.A., Sukhov B.G. et al. Relationship between the structures and antimicrobial activities of argentic nanocomposites. Bull Russ Academy of Sciences: Physics. 2015;79(2):273-275. https://doi.org/10.3103/S1062873815020094
6. Shurygina I.A., Shurygin M.G., Sukhov B.G. Nanobiocomposites of metals as antimicrobial agents/ in book: Antibiotic Resistance: Mechanisms and New Antimicrobial Approaches. 2016:167-186. https://doi.org/10.1016/B978-0-12-803642-6.00008-3
7. Khurana A., Tekula S., Saifi M.A. et al. Therapeutic applications of selenium. Biomed Pharmacother. 2019;111:802-812. https://doi.org/10.1016/j.biopha.2018.12.146
8. Broome C.S., McArdle F., Kyle J.A. et al. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr. 2004;80:154–162. https://doi.org/10.1093/ajcn/80.1.154
9. Casaril A.M., Ignasiak M.T., Chuang C.Y. et al. Selenium-containing indolyl compounds: kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins. Free Radic Biol Med. 2017;113:395-405. https://doi.org/10.1016/j.freeradbiomed.2017.10.344
10. Sharifi S., Behzadi S., Laurent S. et al. Toxicity of Nanomaterials. Chem Soc Rev. 2012;41(6):2323-2343. https://doi.org/10.1039/c1cs15188f
11. Jin N., Zhu H., Liang X. et al. Sodium selenate activated Wnt/β-catenin signaling and repressed amyloid-β formation in a triple transgenic mouse model of Alzheimer′s disease. Exp Neurol. 2017;297:36–49. https://doi.org/10.1016/j.expneurol.2017.07.006
12. Amani H., Habibey R., Shokri F. et al. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci Rep. 2019;9(1):6044. https://doi.org/10.1038/s41598-019-42633-9
13. Xu B., Zhang Q., Luo X. et al. Selenium nanoparticles reduce glucose metabolism and promote apoptosis of glioma cells through reactive oxygen species-dependent manner. Neuroreport. 2020;31(3):226-234. https://doi.org/10.1097/WNR.0000000000001386
14. Trukhan I.S., Dremina N.N., Lozovskaya E.A., Shurygina I.A. Assessment of potential cytotoxicity during vital observation at the Biostation CT. Acta Biomedica Scientifica. 2018;3(6):48-53 (In Russian). https://doi.org/10.29413/ABS.2018-3.6.6
15. RU patent 2614363, 24.03.2017. Sukhov B.G., Ganenko T.V., Pogodaeva N.N. et al. Agent with antitumor activity based on arabinogalactan nanocomposites with selenium and methods for prepariation of such nanobiocomposites (In Russian).
16. Tan H.W., Mo H.Y., Lau A.T.Y., Xu Y.M. Selenium Species: Current Status and Potentials in Cancer Prevention and Therapy. Int J Mol Sci. 2018;20(1):75. https://doi.org/10.3390/ijms20010075
17. Shurygina I.A., Shurygin M.G. Perspectives of metal nanoparticles application for the purposes of regenerative medicine. Siberian Medical Review. 2018;4:31-37 (In Russian). https://doi.org/10.20333/2500136-2018-4-31-37
18. Qiao L., Dou X., Yan S. et al. Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate diquat-induced intestinal barrier dysfunction in C57BL/6 mice through their antioxidant activity. Food Funct. 2020;11:3020-3031. https://doi.org/10.1039/d0fo00132e
19. Bai K., Hong B., He J., Huang W. Antioxidant capacity and hepatoprotective role of chitosan-stabilized selenium nanoparticles in concanavalin a-induced liver injury in mice. Nutrients. 2020;12(3):857. https://doi.org/10.3390/nu12030857
20. Shurygina I.A., Shurygin M.G. Nanoparticles in wound healing and regeneration. In book: Metal Nanoparticles in Pharma. Cham;2017:21-38. https://doi.org/10.1007/978-3-319-63790-7_2
21. Vinceti M., Filippini T., Cilloni S. et al. Health risk assessment of environmental selenium: Emerging evidence and challenges. Mol. Med. Rep. 2017;15:3323–3335. https://doi.org/10.3892/mmr.2017.6377
22. Wadhwani S.A., Shedbalkar U.U., Singh R., Chopade B.A. Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol. 2016;100(6):2555-2566. https://doi.org/10.1007/s00253-016-7300-7
23. Skalickova S., Milosavljevic V., Cihalova K. et al. Selenium nanoparticles as a nutritional supplement. Nutrition. 2017;33:83-90. https://doi.org/10.1016/j.nut.2016.05.001
24. Han H.W., Patel K.D., Kwak J.H. et al. Selenium nanoparticles as candidates for antibacterial substitutes and supplements against multidrug-resistant bacteria. Biomolecules. 2021;11(7):1028. https://doi.org/10.3390/biom11071028
25. Lesnichaya M., Perfileva A., Nozhkina O. et al. Synthesis, toxicity evaluation and determination of possible mechanisms of antimicrobial effect of arabinogalactane-capped selenium nanoparticles. J Trace Elem Med Biol. 2022;69:126904. https://doi.org/10.1016/j.jtemb.2021.126904
26. Sun F., Wang J., Wu X. et al. Selenium nanoparticles act as an intestinal p53 inhibitor mitigating chemotherapy-induced diarrhea in mice. Pharmacol Res. 2019;149:104475. https://doi.org/10.1016/j.phrs.2019.104475
27. Zhang J.S., Gao X.Y., Zhang L.D., Bao Y.P. Biological effects of a nano red elemental selenium. Biofactors. 2001;15(1):27-38. https://doi.org/10.1002/biof.5520150103
28. Zhang J., Wang H., Yan X., Zhang L. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci. 2005;76(10):1099-1109. https://doi.org/10.1016/j.lfs.2004.08.015
29. Wang H., Zhang J., Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med. 2007;42:1524–1533. https://doi.org/10.1016/j.freeradbiomed.2007.02.013
30. Jia X., Li N., Chen J. A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats. Life Sci. 2005;76(17):1989-2003. https://doi.org/10.1016/j.lfs.2004.09.026
31. Shakibaie M., Shahverdi A.R., Faramarzi M.A. et al. Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol. 2013;51(1):58-63. https://doi.org/10.3109/13880209.2012.710241
32. Kuršvietienė L., Mongirdienė A., Bernatonienė J. et al. Selenium anticancer properties and impact on cellular redox status. Antioxidants (Basel). 2020;9(1):80. https://doi.org/10.3390/antiox9010080
33. Zhang Z., Du Y., Liu T. et al. Systematic acute and subchronic toxicity evaluation of polysaccharide-protein complex-functionalized selenium nanoparticles with anticancer potency. Biomater Sci. 2019;7(12):5112-5123. https://doi.org/10.1039/c9bm01104h
34. He Y., Chen S., Liu Z. et al. Toxicity of selenium nanoparticles in male Sprague-Dawley rats at supranutritional and nonlethal levels. Life Sci. 2014;115(1-2):44-51. https://doi.org/10.1016/j.lfs.2014.08.023
35. Hadrup N., Loeschner K., Mandrup K. et al. Subacute oral toxicity investigation of selenium nanoparticles and selenite in rats. Drug Chem Toxicol. 2019;42(1):76-83. https://doi.org/10.1080/01480545.2018.1491589
36. Bai K., Hong B., Huang W., He J. Selenium-nanoparticles-loaded chitosan/ chitooligosaccharide microparticles and their antioxidant potential: a chemical and in vivo investigation. Pharmaceutics. 2020;12(1):43. https://doi.org/10.3390/pharmaceutics12010043
37. Rodionova L.V., Shurygina I.A., Samoylova L.G. et al. Effect of intraosseous introduction of selenium/arabinogalactan nanoglycoconjugate on the main indicators of primary metabolism in consolidation of bone fracture. Acta Biomedica Scientifica. 2016;1(4):104-108 (In Russian). https://doi.org/10.12737/22978
38. Rodionova L.V., Shurygina I.A., Sukhov B.G. et al. Nanobiocomposite based on selenium and arabinogalactan: synthesis, structure, and application. Russ J Gen Chem. 2015;85(2):485-487. https://doi.org/10.1134/S1070363215020218
39. Shurygina I.A., Rodionova L.V., Shurygin M.G. et al. Using confocal microscopy to study the effect of an original pro-enzyme Se/arabinogalactan nanocomposite on tissue regeneration in a skeletal system. Bull Russ Acad Sci Phys. 2015;79(2):256-258. https://doi.org/10.3103/S1062873815020276
40. Rodionova L.V., Shurygina I.A., Samoilova L.G. et al. Osteoresorption modelling by means of introduction of selenium preparation under conditions of reparative osteogenesis. Siberian Medical Journal. 2015;137(6): 94-98 (In Russian). https://doi.org/10.57256/2949-0715-2015-6
41. Kumar N., Krishnani K.K., Singh N.P. Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environ Sci Pollut Res Int. 2018;25(9):8914-8927. https://doi.org/10.1007/s11356-017-1165-x
42. Li H., Zhang J., Wang T. et al. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquat Toxicol. 2008;89(4):251-256. https://doi.org/10.1016/j.aquatox.2008.07.008
43. Mal J., Veneman W.J., Nancharaiah Y.V. et al. A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis. Nanotoxicology. 2017;11(1):87-97. https://doi.org/10.1080/17435390.2016.1275866
44. Shurygina I.A., Sosedova L.M., Novikov M.A. et al. Ecotoxicity of nanometals: the problems and solutions. In book: Nanomaterials: Ecotoxicity, Safety, and Public Perception. Berlin;2018:95-117. https://doi.org/10.1007/978-3-030-05144-0_6
About the Authors
Irina A. ShuryginaRussian Federation
DSс. (Med.), professor
Natalya N. Dremina
Russian Federation
PhD. (Biol)
Irina S. Trukhan
Russian Federation
Michael G. Shurygin
Russian Federation
Supplementary files
Review
For citations:
Shurygina I., Dremina N., Trukhan I., Shurygin M. SELENIUM IN NANOFORM: TOXICITY AND SAFETY. Baikal Medical Journal. 2022;1(1):24-32. (In Russ.) https://doi.org/10.57256/2949-0715-2022-1-24-32