The magazine is published online only. The frequency of releases is 4 times a year.                             

The journal publishes the latest research in the field of clinical and basic medicine:pathological physiology, internal medicine and surgery.

Preview

Baikal Medical Journal

Advanced search

Selenium in nanoform: toxicity and safety

https://doi.org/10.57256/2949-0715-2022-1-24-32

Contents

Scroll to:

Abstract

The review is devoted to the toxicity and safety of nanosized forms of selenium. It is shown that in nature selenium exists mainly in the form of selenate (Se6+), selenite (Se4+), selenide (Se2–) and elemental selenium (Se0), while the latter is insoluble in aqueous media, less toxic and biologically inert. In the form of nanosized particles, elemental selenium is not only biocompatible, but also has antitumor and antimicrobial activity.

It has been shown that elemental selenium in the form of nanoparticles can modulate the activity of the antioxidant and detoxification systems. A dose-dependent effect of selenium in nanosized form has been demonstrated. It has been shown that at high concentrations (above 2 mg Se per kg of animal weight) selenium nanoparticles can cause the development of selenium-induced toxicity in mammals.

It has been shown that elemental selenium in the form of nanoparticles can affect immunoregulation, reproductive function, kidney and liver function, modulate the activity of the antioxidant and detoxification systems, and in high concentrations (above 2 mg Se per kg of animal weight) cause the development of selenium-induced toxicity both in mammals and fish. At the same time, for fish, it was shown that selenium nanoparticles are more toxic than inorganic selenium and cause a more acute reaction of the body to exposure to even low concentrations, possibly associated with hyperaccumulation of selenium in tissues, which once again reminds us of the need to take into account the problems of ecotoxicity of selenium nanocomposites.

For citations:


Shurygina I., Dremina N., Trukhan I., Shurygin M. Selenium in nanoform: toxicity and safety. Baikal Medical Journal. 2022;1(1):24-32. (In Russ.) https://doi.org/10.57256/2949-0715-2022-1-24-32

The review is devoted to the toxicity and safety of nanosized forms of selenium. It is shown that in nature selenium exists mainly in the form of selenate (Se6+), selenite (Se4+), selenide (Se2–) and elemental selenium (Se0), while the latter is insoluble in aqueous media, less toxic and biologically inert. In the form of nanosized particles, elemental selenium is not only biocompatible, but also has antitumor and antimicrobial activity.

It has been shown that elemental selenium in the form of nanoparticles can modulate the activity of the antioxidant and detoxification systems. A dose-dependent effect of selenium in nanosized form has been demonstrated. It has been shown that at high concentrations (above 2 mg Se per kg of animal weight) selenium nanoparticles can cause the development of selenium-induced toxicity in mammals.

It has been shown that elemental selenium in the form of nanoparticles can affect immunoregulation, reproductive function, kidney and liver function, modulate the activity of the antioxidant and detoxification systems, and in high concentrations (above 2 mg Se per kg of animal weight) cause the development of selenium-induced toxicity both in mammals and fish. At the same time, for fish, it was shown that selenium nanoparticles are more toxic than inorganic selenium and cause a more acute reaction of the body to exposure to even low concentrations, possibly associated with hyperaccumulation of selenium in tissues, which once again reminds us of the need to take into account the problems of ecotoxicity of selenium nanocomposites.

References

1. Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23:20. DOI: 10.1186/s40824-019-0166-x.

2. Khan AU, Khan M, Cho MH, Khan MM. Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure. Bioprocess Biosyst Eng. 2020;43(8):1339-1357. DOI: 10.1007/s00449-020-02330-8.

3. Chaudhary S, Umar A, Mehta SK. Surface functionalized seleniumnanoparticles for biomedical applications. J Biomed Nanotechnol. 2014;10(10):3004-3042. DOI: 10.1166/jbn.2014.1985.

4. Шурыгина И.А., Шурыгин М.Г. Нанокомпозиты селена - перспективы применения в онкологии. Вестник новых медицинских технологий. 2020;27(1):81-86. [Shurygina IA, Shurygin MG. Selenium nanocomposites – the prospects of application in oncology. Journal of new medical technologies. 2020;27(1):81-86. (In Russian)]. DOI: 10.24411/1609-2163-2020-16517.

5. Fadeeva TV, Shurygina IA, Sukhov BG, et al. Relationship between the structures and antimicrobial activities of argentic nanocomposites. Bull Russ Academy of Sciences: Physics. 2015;79(2):273-275. DOI: 10.3103/S1062873815020094.

6. Shurygina IA, Shurygin MG, Sukhov BG. Nanobiocomposites of metals as antimicrobial agents/ in book: Antibiotic Resistance: Mechanisms and New Antimicrobial Approaches. 2016:167-186. DOI: 10.1016/B978-0-12-803642-6.00008-3.

7. Khurana A, Tekula S, Saifi M.A, et al. Therapeutic applications of selenium. Biomed Pharmacother. 2019;111:802-812. DOI: 10.1016/j.biopha.2018.12.146.

8. Broome CS, McArdle F, Kyle JA, et al. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr. 2004;80:154–162. DOI: 10.1093/ajcn/80.1.154

9. Casaril AM, Ignasiak MT, Chuang CY, et al. Selenium-containing indolyl compounds: kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins. Free Radic Biol Med. 2017;113:395-405. DOI:10.1016/j.freeradbiomed.2017.10.344.

10. Sharifi S, Behzadi S, Laurent S, et al. Toxicity of Nanomaterials. Chem Soc Rev. 2012;41(6):2323-2343. DOI: 10.1039/c1cs15188f.

11. Jin N, Zhu H, Liang X, et al. Sodium selenate activated Wnt/β-catenin signaling and repressed amyloid-β formation in a triple transgenic mouse model of Alzheimer′s disease. Exp Neurol. 2017;297:36–49. DOI: 10.1016/j.expneurol.2017.07.006.

12. Amani H, Habibey R, Shokri F, et al. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci Rep. 2019;9(1):6044. DOI: 10.1038/s41598-019-42633-9.

13. Xu B, Zhang Q, Luo X, et al. Selenium nanoparticles reduce glucose metabolism and promote apoptosis of glioma cells through reactive oxygen species-dependent manner. Neuroreport. 2020;31(3):226-234. DOI: 10.1097/WNR.0000000000001386.

14. Трухан И.С., Дремина Н.Н., Лозовская Е.А., Шурыгина И.A. Oценка потенциальной цитотоксичности в рамках прижизненного наблюдения на Biostation CT. Acta Biomedica Scientifica. 2018;3(6):48-53. [Trukhan IS., Dremina NN, Lozovskaya EA, Shurygina IA. Assessment of potential cytotoxicity during vital observation at the Biostation CT. Acta Biomedica Scientifica. 2018;3(6):48-53. (In Russian)]. DOI: 10.29413/ABS.2018-3.6.6.

15. Патент на изобретение RU 2614363, 24.03.2017. Сухов БГ, Ганенко ТВ, Погодаева НН, и др. Средство, обладающее противоопухолевой активностью на основе нанокомпозитов арабиногалактана с селеном, и способы получения таких нанобиокомпозитов. [RU patent 2614363, 24.03.2017. Sukhov BG, Ganenko TV, Pogodaeva NN, et al. Agent with antitumor activity based on arabinogalactan nanocomposites with selenium and methods for prepariation of such nanobiocomposites. (In Russian)].

16. Tan HW, Mo HY, Lau ATY, Xu YM. Selenium Species: Current Status and Potentials in Cancer Prevention and Therapy. Int J Mol Sci. 2018;20(1): 75. DOI: 10.3390/ijms20010075.

17. Шурыгина ИА, Шурыгин МГ. Перспективы применения наночастиц металлов для целей регенеративной медицины. Сибирское медицинское обозрение. 2018;4:31-37. [Shurygina IA, Shurygin MG. Perspectives of metal nanoparticles application for the purposes of regenerative medicine. Siberian Medical Review. 2018;4:31-37. (In Russian)]. DOI: 10.20333/2500136-2018-4-31-37.

18. Qiao L, Dou X, Yan S, et al. Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate diquat-induced intestinal barrier dysfunction in C57BL/6 mice through their antioxidant activity. Food Funct. 2020;11:3020-3031. DOI: 10.1039/d0fo00132e.

19. Bai K, Hong B, He J, Huang W. Antioxidant capacity and hepatoprotective role of chitosan-stabilized selenium nanoparticles in concanavalin a-induced liver injury in mice. Nutrients. 2020;12(3):857. DOI: 10.3390/nu12030857.

20. Shurygina IA, Shurygin MG. Nanoparticles in wound healing and regeneration/ In book: Metal Nanoparticles in Pharma. Cham; 2017:21-38. DOI: 10.1007/978-3-319-63790-7_2.

21. Vinceti M, Filippini T, Cilloni S, et al. Health risk assessment of environmental selenium: Emerging evidence and challenges. Mol. Med. Rep. 2017;15:3323–3335. DOI: 10.3892/mmr.2017.6377.

22. Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA. Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol. 2016;100(6):2555-2566. DOI: 10.1007/s00253-016-7300-7.

23. Skalickova S, Milosavljevic V, Cihalova K, et al. Selenium nanoparticles as a nutritional supplement. Nutrition. 2017;33:83-90. DOI: 10.1016/j.nut.2016.05.001.

24. Han HW, Patel KD, Kwak JH, et al. Selenium nanoparticles as candidates for antibacterial substitutes and supplements against multidrug-resistant bacteria. Biomolecules. 2021;11(7):1028. DOI: 10.3390/biom11071028.

25. Lesnichaya M, Perfileva A, Nozhkina O, et al. Synthesis, toxicity evaluation and determination of possible mechanisms of antimicrobial effect of arabinogalactane-capped selenium nanoparticles. J Trace Elem Med Biol. 2022;69:126904. DOI: 10.1016/j.jtemb.2021.126904.

26. Sun F, Wang J, Wu X, et al. Selenium nanoparticles act as an intestinal p53 inhibitor mitigating chemotherapy-induced diarrhea in mice. Pharmacol Res. 2019;149:104475. DOI: 10.1016/j.phrs.2019.104475.

27. Zhang JS, Gao XY, Zhang LD, Bao YP. Biological effects of a nano red elemental selenium. Biofactors. 2001;15(1):27-38. DOI: 10.1002/biof.5520150103.

28. Zhang J, Wang H, Yan X, Zhang L. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci. 2005;76(10):1099-1109. DOI: 10.1016/j.lfs.2004.08.015.

29. Wang H, Zhang J, Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med. 2007; 42:1524–1533. DOI: 10.1016/j.freeradbiomed.2007.02.013.

30. Jia X, Li N, Chen J. A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats. Life Sci. 2005;76(17):1989-2003. DOI: 10.1016/j.lfs.2004.09.026.

31. Shakibaie M, Shahverdi AR, Faramarzi MA, et al. Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol. 2013;51(1):58-63. DOI: 10.3109/13880209.2012.710241.

32. Kuršvietienė L, Mongirdienė A, Bernatonienė J, et al. Selenium anticancer properties and impact on cellular redox status. Antioxidants (Basel). 2020;9(1):80. DOI: 10.3390/antiox9010080.

33. Zhang Z, Du Y, Liu T, et al. Systematic acute and subchronic toxicity evaluation of polysaccharide-protein complex-functionalized selenium nanoparticles with anticancer potency. Biomater Sci. 2019;7(12):5112-5123. DOI: 10.1039/c9bm01104h.

34. He Y, Chen S, Liu Z, et al. Toxicity of selenium nanoparticles in male Sprague-Dawley rats at supranutritional and nonlethal levels. Life Sci. 2014;115(1-2):44-51. DOI: 10.1016/j.lfs.2014.08.023.

35. Hadrup N, Loeschner K, Mandrup K, et al. Subacute oral toxicity investigation of selenium nanoparticles and selenite in rats. Drug Chem Toxicol. 2019;42(1):76-83. DOI: 10.1080/01480545.2018.1491589.

36. Bai K, Hong B, Huang W, He J. Selenium-nanoparticles-loaded chitosan/ chitooligosaccharide microparticles and their antioxidant potential: a chemical and in vivo investigation. Pharmaceutics. 2020;12(1):43. DOI: 10.3390/pharmaceutics12010043.

37. Родионова Л.В., Шурыгина И.А., Самойлова Л.Г. и др. Влияние внутрикостного введения нанобиокомпозита селена и арабиногалактана на показатели основного обмена при репаративной регенерации костной ткани. Acta Biomedica Scientifica. 2016;1(4):104-108. [Rodionova LV, Shurygina IA, Samoylova LG. Effect of intraosseous introduction of selenium/arabinogalactan nanoglycoconjugate on the main indicators of primary metabolism in consolidation of bone fracture. Acta Biomedica Scientifica. 2016;1(4):104-108 (In Russian)].

38. Rodionova LV, Shurygina IA, Sukhov BG, et al. Nanobiocomposite based on selenium and arabinogalactan: synthesis, structure, and application. Russ J Gen Chem. 2015;85(2):485-487. DOI: 10.1134/S1070363215020218.

39. Shurygina IA, Rodionova LV, Shurygin MG, et al. Using confocal microscopy to study the effect of an original pro-enzyme Se/arabinogalactan nanocomposite on tissue regeneration in a skeletal system. Bull Russ Acad Sci Phys. 2015;79(2): 256-258. DOI: 10.3103/S1062873815020276.

40. Родионова Л.В., Шурыгина И.А., Самойлова Л.Г. и др. Способ моделирования остеорезорбции посредством введения препарата селена в условиях репаративного остеогенеза. Сибирский медицинский журнал (Иркутск). 2015;137(6): 94-98. [Rodionova LV, Shurygina IA, Samoilova LG, et al. Osteoresorption modelling by means of introduction of selenium preparation under conditions of reparative osteogenesis. Siberian Medical Journal. 2015;137(6): 94-98 (In Russian)].

41. Kumar N, Krishnani KK, Singh NP. Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environ Sci Pollut Res Int. 2018;25(9):8914-8927. DOI: 10.1007/s11356-017-1165-x.

42. Li H, Zhang J, Wang T, et al. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquat Toxicol. 2008;89(4):251-256. DOI: 10.1016/j.aquatox.2008.07.008.

43. Mal J, Veneman WJ, Nancharaiah YV, et al. A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis. Nanotoxicology. 2017;11(1):87-97. DOI: 10.1080/17435390.2016.1275866.

44. Shurygina IA, Sosedova LM, Novikov MA, et al. Ecotoxicity of nanometals: the problems and solutions/ In book: Nanomaterials: Ecotoxicity, Safety, and Public Perception. Berlin, 2018. 95-117. DOI: 10.1007/978-3-030-05144-0_6.


About the Authors

Irina A. Shurygina
Deputy Director for research of Irkutsk Scientific Center of Surgery and Traumatology
Russian Federation

DSс. (Med.), professor



Natalya N. Dremina
Senior Research Officer at the Laboratory of cell technologies and regenerative medicine of Irkutsk Scientific Center of Surgery and Traumatology
Russian Federation

PhD. (Biol)



Irina S. Trukhan
ФГБНУ «Иркутский научный центр хирургии и травматологии», Иркутск
Russian Federation


Michael G. Shurygin
ФГБНУ «Иркутский научный центр хирургии и травматологии», Иркутск
Russian Federation


Supplementary files

Review

For citations:


Shurygina I., Dremina N., Trukhan I., Shurygin M. Selenium in nanoform: toxicity and safety. Baikal Medical Journal. 2022;1(1):24-32. (In Russ.) https://doi.org/10.57256/2949-0715-2022-1-24-32

Views: 2851


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-0715 (Online)

Irkutsk State Medical University

Irkutsk Scientific Center for Surgery and Traumatology