ANTIOXIDANTS AS POTENTIAL BIOMARKERS OF NONALCOHOLIC FATTY LIVER DISEASE STAGES
https://doi.org/10.57256/2949-0715-2023-4-24-32
Abstract
Nonalcoholic fatty liver disease is a complex and multifactorial pathology associated with multiple epigenetic, genetic and environmental factors, and its pathogenesis is still not fully understood. Nonalcoholic fatty liver disease begins with simple steatosis and progresses to nonalcoholic steatohepatitis, which is characterized by signs of oxidative stress, increased lipid peroxidation activity, inflammation, fibrosis, and apoptosis. Antioxidant deficiency is important in the pathogenesis of nonalcoholic fatty liver disease, as it is they that cause the transition of steatosis to steatohepatitis in nonalcoholic fatty liver disease. Markers of antioxidant defense are used to assess disease progression and pathologic state. This article reviews several key biomarkers of antioxidant defense that can be investigated in clinical practice.
Determination of these biomarkers in nonalcoholic fatty liver disease can be used for diagnostic purposes.
About the Authors
Sofya D. KravchenkoRussian Federation
Natalia M. Kozlova
Russian Federation
Olesya V. Tirikova
Russian Federation
Vera Il. Bakhtairova
Russian Federation
References
1. Ivashkin V.T., Maevskaya M.V., Zharkova M.S. et al. Clinical recommendations of the Russian Society for Liver Research, Russian Gastroenterological Association, Russian Association of Endocrinologists, Russian Association of Gerontologists and Geriatrics and National Society of Preventive Cardiology on the diagnosis and treatment of nonalcoholic fatty liver disease. Russian Journal of Gastroenterology, Hepatology, and Coloproctology. 2022;32(4):104-140. (In Russian). https://doi.org/10.22416/1382-4376-2022-32-4-104-140
2. Mayevskaya M.V., Ivashkin V.T. Liver and Nutrition. An Optimal Diet for Non-Alcoholic Fatty Liver Disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2018;28(5):105-116 (In Russian). https://doi.org/10.22416/1382-4376-2018-28-5-105-116
3. Shao J.S., Aly Z.A., Lai C.F. et al. Vascular Bmp Msx2 Wnt signaling and oxidative stress in arterial calcification. Ann N Y Acad Sci. 2007;1117:40-50. https://doi.org/10.1196/annals.1402.075.
4. Ha H.L., Shin H.J., Feitelson M.A., Yu D.Y. Oxidative stress and antioxidants in hepatic pathogenesis. World J Gastroenterol. 2010;16(48):6035-6043. https://doi.org/10.3748/wjg.v16.i48.6035
5. Sies H., Berndt C., Jones D.P. Oxidative Stress. Annu Rev Biochem. 2017;20;(86):715-748. https://doi.org/10.1146/annurev-biochem-061516-045037
6. Mishina E.E., Mayorov A.Y., Bogomolov P.O. et al. Nonalcoholic fatty liver disease: cause or consequence of insulin resistance? Diabetes mellitus. 2017;20(5):335-343 (In Russian). https://doi.org/10.14341/DM9372
7. Seki S., Kitada T., Yamada T. et al. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J Hepatol. 2002;37(1):56-62. https://doi.org/10.1016/s0168-8278(02)00073-9
8. Janos F., Geza C., Andras V. Free Radical Reactions in Medicine. Springer Berlin (Heidelberg). 2011;(12):199. https://doi.org/10.1007/978-3-642-83104-1
9. Galano A., Alvarez-Idaboy J.R. Glutathione: mechanism and kinetics of its non-enzymatic defense action against free radicals. RSC Advances. 2011;(1):1763–1771. https://doi.org/10.1039/C1RA00474C
10. Anderson M. Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact. 1998;(111-112):1–14. https://doi.org/10.1016/s0009-2797(97)00146-4
11. Winterbourn C. Superoxide as an intracellular radical sink. Free Radical Biology and Medicine. 1993;(14):85–90. https://doi.org/10.1016/0891-5849(93)90512-s
12. Owen J., Butterfield D. Measurement of oxidized/reduced glutathione ratio. Methods Mol Biol. 2010;(648):269-77. https://doi.org/10.1007/978-1-60761-756-3_18
13. Aquilano K., Baldelli S., Ciriolo M. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol. 2014;(5):196. https://doi.org/10.3389/fphar.2014.00196
14. Franco R., Cidlowski J. Apoptosis and glutathione: beyond an antioxidant. Cell Death and Differentiation. 2009;(16):1303–1314. https://doi.org/10.1038/cdd.2009.107
15. Townsend D., Tew K., Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;(57):145-55. https://doi.org/10.1016/s0753-3322(03)00043-x
16. Franco R., Cidlowski J. Apoptosis and glutathione: beyond an antioxidant. Cell Death and Differentiation. 2009;(16):1303–1314. https://doi.org/10.1038/cdd.2009.107
17. Board P., Menon D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochimica et Biophysica Acta. 2013;1830(5):3267–3288. https://doi.org/10.1016/j.bbagen.2012.11.019
18. Pigeolet E., Corbisier P., Houbion A. et al. Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech Ageing Dev. 1990;51(3):283-97. https://doi.org/10.1016/0047-6374(90)90078-t
19. Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta. 2013;1830(5):3217-66. https://doi.org/10.1016/j.bbagen.2012.09.018
20. Flohe L., Ursini F. Peroxidase: a term of many meanings. Antioxid Redox Signal. 2008;10(9):1485-90. https://doi.org/10.1089/ars.2008.2059
21. Flohe L., Günzler W.A. Assays of glutathione peroxidase. Methods Enzymol. 1984;(105):114-21. https://doi.org/10.1016/s0076-6879(84)05015-1
22. Czeczot H., Scibior D., Skrzycki M. et al. Glutathione and GSH-dependent enzymes in patients with liver cirrhosis and hepatocellular carcinoma. Acta Biochim Pol. 2006;53(1):237-41. URL: https://pubmed.ncbi.nlm.nih.gov/16404476/ [accessed: 15.11.2023]
23. Townsend D.M., Tew K.D., Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57(3-4):145-55. https://doi.org/10.1016/s0753-3322(03)00043-x
24. Chai Y.C., Ashraf S.S., Rokutan K. et al. S-thiolation of individual human neutrophil proteins including actin by stimulation of the respiratory burst: evidence against a role for glutathione disulfide. Arch Biochem Biophys. 1994;310(1):273-81. https://doi.org/10.1006/abbi.1994.1167
25. Dentico P., Volpe A., Buongiorno R. et al. Glutathione in the treatment of chronic fatty liver diseases. Recenti Prog Med. 1995;86(7-8):290-3. URL: https://pubmed.ncbi.nlm.nih.gov/7569285/ [accessed: 15.11.2023]
26. Rolo A.P., Teodoro J.S., Palmeira C.M. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med. 2012;52(1):59-69. https://doi.org/10.1016/j.freeradbiomed.2011.10.003
27. Hardwick R.N., Fisher C.D., Canet M.J. et al. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab Dispos. 2010;38(12):2293-301. https://doi.org/10.1124/dmd.110.035006
28. Ismail N., Okasha S., Dhawan A. et al. Glutathione peroxidase, superoxide dismutase and catalase activities in hepatic tissue from children with glycogen storage disease. Archs Med Sci. 2009;(5):86-90. URL: https://www.termedia.pl/Glutathione-peroxidase-superoxide-dismutase-and-catalase-activities-in-hepatic-tissue-from-children-with-glycogen-storage-disease,19,12292,0,1.html [accessed: 15.11.2023]
29. Sies H., Stahl W. Vitamins E and C, beta-carotene and other carotenoids as antioxidants. Am J Clin Nutr. 1995;62;(6):1315S-1321S. https://doi.org/10.1093/ajcn/62.6.1315S
30. Burton G.W., Ingold K.U. Autooxidation of biological molecules. The antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. Journal of the American Chemical Society.1981;(103):6472-7. https://doi.org/10.1021/ja00411a035
31. Cankurtaran M., Kav T., Yavuz B. et al. Serum vitamin-E levels and its relation to clinical features in nonalcoholic fatty liver disease with elevated ALT levels. Acta Gastroenterol Belg. 2006;69(1):5-11. URL: https://www.ageb.be/Articles/Volume%2069%20(2006)/Fasc1/02-canturtaran-.pdf [accessed: 15.11.2023]
32. Yamamoto Y., Yamashita S., Fujisawa A. et al. Oxidative stress in patients with hepatitis, cirrhosis, and hepatoma evaluated by plasma antioxidants. Biochem Biophys Res Commun. 1998;247(1):166-70. https://doi.org/10.1006/bbrc.1998.8752
33. Yesilova Z., Yaman H., Oktenli C. et al. Systemic markers of lipid peroxidation and antioxidants in patients with nonalcoholic Fatty liver disease. Am J Gastroenterol. 2005;100(4):850-5. https://doi.org/10.1111/j.1572-0241.2005.41500.x
34. Sall T.S., Shcherbakova E.S., Sitkin S.I. et al. Molecular mechanisms of non - alcoholic fatty liver disease development. Profilakticheskaya Meditsina. 2021;24(4):120 131 (In Russian). https://doi.org/10.17116/profmed202124041120
35. Li Z.Z., Berk M., McIntyre T.M. et al. Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J Biol Chem. 2009;284(9):5637-44. https://doi.org/10.1074/jbc.M807616200
36. Zhavoronok T.V., Stepova E.A., Ryazantseva N.V. et al. The disturbance of oxidative metabolism in acute inflammatory diseases. Clin. lab. diag. 2006;(12):10-14 (In Russian).
37. Tirikova O.V., Kozlova N.M., Kravchenko S.D. Association of non-alcoholic fatty liver disease with cardiovascular disease according to autopsy data. Experimental and Clinical Gastroenterology. 2022;7(203):38-44 (In Russian). https://doi.org/10.31146/1682-8658-ecg-203-7-38-44
38. Mazzolini G., Sowa J.P., Atorrasagasti C. et al. Significance of Simple Steatosis: An Update on the Clinical and Molecular Evidence. Cells. 2020;9(11):2458. https://doi.org/10.3390/cells9112458
39. Kormosh N.G. Physiologic role of reactive oxygen species at the cellular level and the organism as a whole - a clinician's view. Russian Biotherapeutic Journal 2012;11(1):85-90. URL: https://cyberleninka.ru/article/n/fiziologicheskaya-rol-aktivnyh-form-kisloroda-na-kletochnom-urovne-i-organizma-v-tselom-vzglyad-klinitsista-ch-2 [accessed: 15.11.2023]
40. Monserrat-Mesquida M., Quetglas-Llabrés M., Capó X. et al. Metabolic Syndrome is Associated with Oxidative Stress and Proinflammatory State. Antioxidants (Basel). 2020;9(3):236. https://doi.org/ 10.3390/antiox9030236
41. Kumar A., Sharma A., Duseja A. et al. Patients with Nonalcoholic Fatty Liver Disease (NAFLD) have Higher Oxidative Stress in Comparison to Chronic Viral Hepatitis. J Clin Exp Hepatol. 2013;3(1):12-8. https://doi.org/10.1016/j.jceh.2012.10.009
42. Köroğlu E., Canbakan B., Atay K. et al. Role of oxidative stress and insulin resistance in disease severity of non-alcoholic fatty liver disease. Turk J Gastroenterol. 2016;27(4):361-6. https://doi.org/ 10.5152/tjg.2016.16106
43. Koliaki C., Szendroedi J., Kaul K. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 2015;21(5):739-46. https://doi.org/10.1016/j.cmet.2015.04.004
44. Videla L.A., Rodrigo R., Orellana M. et al. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin Sci (Lond). 2004;106(3):261-8. https://doi.org/ 10.1042/CS20030285
45. Leghi G.E., Domenici F.A., Vannucchi H. Influence Of Oxidative Stress And Obesity In Patients With Nonalcoholic Steatohepatitis. Arq Gastroenterol. 2015;52(3):228-33. https://doi.org/ 10.1590/S0004-28032015000300014
Review
For citations:
Kravchenko S., Kozlova N., Tirikova O., Bakhtairova V. ANTIOXIDANTS AS POTENTIAL BIOMARKERS OF NONALCOHOLIC FATTY LIVER DISEASE STAGES. Baikal Medical Journal. 2023;2(4):24-32. https://doi.org/10.57256/2949-0715-2023-4-24-32