HYPOCHOLESTEROLEMIA IN SEPTIC CONDITIONS. MECHANISMS OF DEVELOPMENT AND WAYS OF CORRECTION
https://doi.org/10.57256/2949-0715-2023-4-33-45
Abstract
Sepsis is one of the significant problems in medicine for many decades. It is characterized by high levels of morbidity, mortality and high financial costs. The review is devoted to the cellular and molecular biological mechanisms of sepsis, including immune, biochemical changes, mitochondrial transformations, coagulopathy, neuroendocrine disorders, damage to the endoplasmic reticulum and a number of other processes that ultimately lead to multiple organ fail-ure. The article presents two directions of development of cellular and molecular biological changes in generalized inflammation, ending with a favorable or unfavorable outcome. Information on changes in the transport of cholesterol and polyunsaturated fatty acids in tissues against the background of septic processes is summarized. The mechanisms of reducing the concentration of cholesterol in tissues, the influence of hypocholesterolemia on the course of a gen-eralized inflammatory process and the development of such complications as Waterhouse – Friderichsen syndrome are discussed in detail. A concept of a chain of pathogenetic changes causing lethal outcome has been formed, and on its basis, methods for correcting metabolism in sepsis described in the literature (intravenous administration of reduced high-density lipoproteins, inhibition of proprotein convertase subtilisin kexin 9) are considered. For the first time, the concept of treating septic conditions with cholesterol in the composition of liposomes was proposed.
About the Authors
Karolina R. Grigor’evaBelarus
Sergey S. Osochuk
Belarus
Viktor S. Osochuk
Belarus
References
1. Большая медицинская энциклопедия. Под ред. Б. В. Петровского. 3-е изд. М.:Советская энциклопедия; 1984;23 Сепсис [Big medical encyclopedia. Ed. B.V. Petrovsky. 3rd ed. M.: Soviet Encyclopedia; 1984;23 Sepsis (In Russian)]. https://бмэ.орг/index.php/СЕПСИС [дата доступа: 13.10.2022]
2. Национальный правовой Интернет–портал Республики Беларусь. [National legal Internet portal of the Republic of Belarus (In Russian)]. https://pravo.by/ [дата доступа: 13.10.2022]
3. Сажин В.П., Карсанов А.М., Кульчиев А.А. и др. Реальность и перспективы изучения эпидемиологии сепсиса. Хирургия. Журнал им. Н.И. Пирогова. 2018;(8):85‑89. [Sazhin VP, Karsanov AM, Kul’chiev AA et al. Reality and prospects of sepsis epidemiology research. Pirogov Russian Journal of Surgery = Khirurgiya. Zurnal im. N.I. Pirogova. 2018;(8):85‑89 (In Russian)]. DOI: 10.17116/hirurgia2018885
4. Giovannini I, Boldrini G, Chiarla C, Giuliante F, Vellone M, Nuzzo G. Pathophysiologic correlates of hypocholesterolemia in critically ill surgical patients. Intensive Care Med. 1999;25(7):748-751. DOI:10.1007/s001340050940
5. Huang M, Cai S, Su J. The Pathogenesis of Sepsis and Potential Therapeutic Targets. Int J Mol Sci. 2019;20(21):5376. DOI:10.3390/ijms20215376
6. Efron PA, Martins A, Minnich D, et al. Characterization of the systemic loss of dendritic cells in murine lymph nodes during polymicrobial sepsis. J Immunol. 2004;173(5):3035-3043. DOI:10.4049/jimmunol.173.5.3035
7. Guo Y, Patil NK, Luan L, Bohannon JK, Sherwood ER. The biology of natural killer cells during sepsis. Immunology. 2018;153(2):190-202. DOI:10.1111/imm.12854
8. Blanc M, Hsieh WY, Robertson KA, et al. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity. 2013;38(1):106-118. DOI:10.1016/j.immuni.2012.11.004
9. Zang R, Case JB, Yutuc E, et al. Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. Proc Natl Acad Sci U S A. 2020, 117(50):32105-32113. DOI: 10.1073/pnas.2012197117
10. Griffiths WJ, Wang Y. Cholesterol metabolism: from lipidomics to immunology. J Lipid Res. 2022, 63(2):100165. DOI: 10.1016/j.jlr.2021.100165.
11. Wu Y, Yao YM, Lu ZQ. Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. J Mol Med (Berl). 2019, 97(4):451-462. DOI: 10.1007/s00109-019-01756-2.
12. Donnino MW, Cocchi MN, Salciccioli JD, et al . Coenzyme Q10 levels are low and may be associated with the inflammatory cascade in septic shock. Crit Care. 2011, 15(4):R189. DOI:10.1186/cc10343.
13. Elustondo P, Martin LA, Karten B. Mitochondrial cholesterol import. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(1):90-101. DOI:10.1016/j.bbalip.2016.08.012
14. Flück CE, Pandey AV, Dick B, et al. Characterization of novel StAR (steroidogenic acute regulatory protein) mutations causing non-classic lipoid adrenal hyperplasia. PLoS One. 2011;6(5):e20178. DOI:10.1371/journal.pone.0020178
15. Ma Y, Zhou Y, Wu F, Ji W, Zhang J, Wang X. The Bidirectional Interactions Between Inflammation and Coagulation in Fracture Hematoma. Tissue Eng Part B Rev. 2019;25(1):46-54. DOI:10.1089/ten.TEB.2018.0157
16. Peck MD. Omega-3 polyunsaturated fatty acids: benefit or harm during sepsis? New Horiz. 1994;2(2):230-236. https://pubmed.ncbi.nlm.nih.gov/7922448/ [accessed: 10.10.2023].
17. Levi M, Schultz M, van der Poll T. Sepsis and thrombosis. Semin Thromb Hemost. 2013;39(5):559-566. DOI:10.1055/s-0033-1343894
18. Boivin A, Burban M, Clere-Jehl R, et al. Docosahexaenoic acid, but not eicosapentaenoic acid, improves septic shock-induced arterial dysfunction in rats. PLoS One. 2017;12(12):e0189658. DOI:10.1371/journal.pone.0189658
19. Delgado GE, Krämer BK, Lorkowski S, März W, von Schacky C, Kleber ME. Individual omega-9 monounsaturated fatty acids and mortality-The Ludwigshafen Risk and Cardiovascular Health Study. J Clin Lipidol. 2017, 11(1):126-135.e5. DOI: 10.1016/j.jacl.2016.10.015.
20. Kanczkowski W, Sue M, Zacharowski K, et al. The role of adrenal gland microenvironment in the HPA axis function and dysfunction during sepsis. Mol Cell Endocrinol. 2015;408:241-248. DOI:10.1016/j.mce.2014.12.019
21. Sam AD 2nd, Sharma AC, Lee LY, Hales DB, Law WR, Ferguson JL, Bosmann HB. Sepsis produces depression of testosterone and steroidogenic acute regulatory (StAR) protein. Shock. 1999:298-301. DOI: 10.1097/00024382-199904000-00013.
22. Jiao G, Hao L, Wang M, et al. Upregulation of endoplasmic reticulum stress is associated with diaphragm contractile dysfunction in a rat model of sepsis. Mol Med Rep. 2017;15(1):366-374. DOI:10.3892/mmr.2016.6014
23. Odnoshivkina UG, Kuznetsova EA, Petrov AM. 25-Hydroxycholesterol as a Signaling Molecule of the Nervous System. Biochemistry (Mosc). 2022;87(6):524-537. DOI:10.1134/S0006297922060049
24. Macadam W, Shiskin C. The Cholesterol Content of the Blood in Relation to Genito-urinary Sepsis. Proc R Soc Med. 1924;17(Sect Urol):53-55. https://pubmed.ncbi.nlm.nih.gov/19984130/ [accessed: 10.10.2023].
25. Ulevitch R. J. [et al.]. New function for high density lipoproteins. Isolation and characterization of a bacterial lipopolysaccharide – high-density lipoprotein complex formed in rabbit plasma. J Clin Invest. 1981, 67(3):827–37. DOI:10.1172/JCI110100
26. Chiarla C, Giovannini I, Siegel JH. The relationship between plasma cholesterol, amino acids and acute phase proteins in sepsis. Amino Acids. 2004;27(1):97-100. DOI:10.1007/s00726-004-0064-x
27. Доценко М.Л., Алексейчик Д.С., Панкратова Ю. Ю. и др. Холестерин и иммунитет: клинико-иммунологические параллели. Наука и инновации. 2015, 146(4):58–64. [Dotsenko ML., Alekseychik DS., Pankratova YuYu. et al. Cholesterol and immunity: clinical and immunological parallels. Science and innovation. 2015, 146(4):58–64 (In Russian)]. https://cyberleninka.ru/article/n/holesterin-i-immunitet-kliniko-immunologicheskie-paralleli [дата доступа: 10.10.2023].
28. Chiarla C, Giovannini I, Giuliante F, et al. Severe hypocholesterolemia in surgical patients, sepsis, and critical illness. J Crit Care. 2010;25(2):361.e7-361.e12. DOI:10.1016/j.jcrc.2009.08.006
29. Никифорова Ю. Г., Точило С. А., Марочков А. В. Сравнительная оценка информативности определения прокальцитонина, с-реактивного белка и холестерина как лабораторных маркеров сепсиса. Вестник анестезиологии и реаниматологии. 2016;(13):47-52 [Nikiforova Yu.G., Tochilo S.A., Marochkov A.V.. Comparative assessment of the informativeness of determining procalcitonin, c-reactive protein and cholesterol as laboratory markers of sepsis. Bulletin of anesthesiology and resuscitation. 2016;(13):47-52 (In Russian)]. DOI:10.21292/2078-5658-2016-13-1-47-52
30. Byrne CD. Triglyceride-rich lipoproteins: are links with atherosclerosis mediated by a procoagulant and proinflammatory phenotype? Atherosclerosis. 1999;145(1):1-15. DOI:10.1016/s0021-9150(99)00110-0
31. Panousis CG, Zuckerman SH. Interferon-gamma induces downregulation of Tangier disease gene (ATP-binding-cassette transporter 1) in macrophage-derived foam cells. Arterioscler Thromb Vasc Biol. 2000;20(6):1565-1571. DOI:10.1161/01.atv.20.6.1565
32. Grebe A, Latz E. Cholesterol crystals and inflammation. Curr Rheumatol Rep. 2013;15(3):313. DOI:10.1007/s11926-012-0313-z
33. Han R. Plasma lipoproteins are important components of the immune system. Microbiol Immunol. 2010;54(4):246-253. DOI:10.1111/j.1348-0421.2010.00203.x
34. Yuan Y, Wu W, Sun S, Zhang Y, Chen Z. PCSK9: A Potential Therapeutic Target for Sepsis. J Immunol Res. 2020;2020:2687692. DOI:10.1155/2020/2687692
35. Norata GD, Tavori H, Pirillo A, Fazio S, Catapano AL. Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovasc Res. 2016;112(1):429-442. DOI:10.1093/cvr/cvw194
36. Boyd JH, Fjell CD, Russell JA et al. Increased Plasma PCSK9 Levels Are Associated with Reduced Endotoxin Clearance and the Development of Acute Organ Failures during Sepsis. J Innate Immun. 2016;8(2):211-220. DOI:10.1159/000442976
37. Ding Z, Pothineni NVK, Goel A et al. PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovasc Res. 2020;116(5):908-915. DOI:10.1093/cvr/cvz313
38. van Leeuwen HJ, Heezius EC, Dallinga GM et al. Lipoprotein metabolism in patients with severe sepsis. Crit Care Med. 2003;31(5):1359-1366. DOI:10.1097/01.CCM.0000059724.08290.51
39. Иванов И.В., Лепехова С.А., Зарицкая Л.В. и др. Липидтранспортная система у больных с гнойной висцеральной патологией. Сибирский медицинский журнал. 2009;(7):95-97 [Ivanov I.V., Lepekhova S.A., Zaritskaya L.V. et al. Lipid transport system in patients with purulent visceral pathology. Siberian Medical Journal. 2009;(7):95-97 (In Russian)]. https://www.ismu.baikal.ru/src/downloads/db3f7969_2009-7.pdf [дата доступа: 10.10.2023].
40. Косинец А.Н., Осочук С.С., Коневалова Н.Ю. Сравнительная характеристика изменений липидтранспортной системы у умерших и оставшихся в живых больных разлитым гнойным перитонитом. Вестник ВГМУ, 2004;3(3):19-22 [Kosinets A.N., Osochuk S.S., Konevalova N.Yu.. Comparative characteristics of changes in the lipid transport system in deceased and surviving patients with diffuse purulent peritonitis. Vestnik VSMU. 2004;3(3):19-22 (In Russian)]. https://cyberleninka.ru/article/n/sravnitelnaya-harakteristika-izmeneniy-lipidtransportnoy-sistemy-u-umershih-i-ostavshihsya-v-zhivyh-bolnyh-razlitym-gnoynym [дата доступа: 10.10.2023].
41. Van der Westhuyzen DR, Cai L, de Beer MC, de Beer FC. Serum amyloid A promotes cholesterol efflux mediated by scavenger receptor B-I. J Biol Chem. 2005; 280(43):35890-5. DOI: 10.1074/jbc.M505685200.
42. Hofmaenner DA, Kleyman A, Press A, Bauer M, Singer M. The Many Roles of Cholesterol in Sepsis: A Review. Am J Respir Crit Care Med. 2022;205(4):388-396. DOI:10.1164/rccm.202105-1197TR
43. Marik PE, Zaloga GP. Adrenal insufficiency during septic shock. Crit Care Med. 2003;31(1):141-145. DOI:10.1097/00003246-200301000-00022
44. Осочук С.С., Грушин В.Н., Якименко Л.Л. Гипохолестеролемия как причина кровоизлияния в надпочечники при экспериментальном перитоните. Acta Biomedica Scientifica. 2011;1(77):231–234 [Osochuk S.S., Grushin V.N., Yakimenko L.L. Hypocholesterolemia as a cause of hemorrhage into the adrenal glands in experimental peritonitis. Acta Biomedica Scientifica. 2011;1(77):231–234 (In Russian)]. https://cyberleninka.ru/article/n/gipoholesterolemiya-kak-prichina-krovoizliyaniya-v-nadpochechniki-pri-eksperimentalnom-peritonite [дата доступа: 10.10.2023].
45. Boonen E, Van den Berghe G. Endocrine responses to critical illness: novel insights and therapeutic implications. J Clin Endocrinol Metab. 2014;99(5):1569-1582. DOI:10.1210/jc.2013-4115
46. Bassett JR, West SH. Vascularization of the adrenal cortex: its possible involvement in the regulation of steroid hormone release. Microsc Res Tech. 1997;36(6):546-557. DOI:10.1002/(SICI)1097-0029(19970315)36:6<546::AID-JEMT11>3.0.CO;2-O
47. Pozzi AO, Bernardo E, Coronado MT, Punchard MA, González P, Fantidis P. Acute arterial thrombosis in the absence of inflammation: the stress-related anti-inflammatory hormone ACTH participates in platelet-mediated thrombosis. Atherosclerosis. 2009? 204(1):79-84. DOI: 10.1016/j.atherosclerosis.2008.08.023.
48. Lee JH, Meyer EJ, Nenke MA et al. Corticosteroid-binding globulin (CBG): spatiotemporal distribution of cortisol in sepsis. Trends Endocrinol Metab. 2023;34(3):181-190. DOI:10.1016/j.tem.2023.01.002
49. Angstwurm MW, Gaertner R, Schopohl J. Outcome in elderly patients with severe infection is influenced by sex hormones but not gender. Crit Care Med. 2005;33(12):2786-2793. DOI:10.1097/01.ccm.0000190242.24410.17
50. Oh HY, Lee EJ, Yoon S. et al. Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction. Prostate. 2007;67(10):1061-1069. DOI:10.1002/pros.20593
51. Solomkin JS, Robinson CT, Cave CM, Ehmer B, Lentsch AB. Alterations in membrane cholesterol cause mobilization of lipid rafts from specific granules and prime human neutrophils for enhanced adherence-dependent oxidant production. Shock. 2007;28(3):334-338. DOI:10.1097/shk.0b013e318047b893
52. Zhang Q, Liu Z, Wang Q, Li X. Low cholesterol is not associated with depression: data from the 2005-2018 National Health and Nutrition Examination Survey. Lipids Health Dis. 2022;21(1):35. DOI:10.1186/s12944-022-01645-7
53. Davydow DS, Ribe AR, Pedersen HS, Vestergaard M, Fenger-Grøn M. The association of unipolar depression with thirty-day mortality after hospitalization for infection: A population-based cohort study in Denmark. J Psychosom Res. 2016;89:32-38. DOI:10.1016/j.jpsychores.2016.08.006
54. Paudel P, Ross S, Li XC. Molecular Targets of Cannabinoids Associated with Depression. Curr Med Chem. 2022;29(11):1827-1850. DOI:10.2174/0929867328666210623144658
55. Apostu D, Lucaciu O, Mester A, et al. Cannabinoids and bone regeneration. Drug Metab Rev. 2019;51(1):65-75. DOI:10.1080/03602532.2019.1574303
56. Hansen HS, Artmann A. Endocannabinoids and nutrition. J Neuroendocrinol. 2008;20 Suppl 1:94-99. DOI:10.1111/j.1365-2826.2008.01687.x
57. Habenicht AJ, Salbach P, Goerig M, et al. The LDL receptor pathway delivers arachidonic acid for eicosanoid formation in cells stimulated by platelet-derived growth factor. Nature. 1990;345(6276):634-636. DOI:10.1038/345634a0
58. Ishida T, Ohta M, Nakakuki M, et al. Distinct regulation of plasma LDL cholesterol by eicosapentaenoic acid and docosahexaenoic acid in high fat diet-fed hamsters: participation of cholesterol ester transfer protein and LDL receptor. Prostaglandins Leukot Essent Fatty Acids. 2013;88(4):281-288. DOI:10.1016/j.plefa.2013.01.001
59. Титов В.Н. Атеросклероз как патология полиеновых жирных кислот. Биологические основы теории атерогенеза. М.:Фонд «Клиника XXI века»;2002: 58-59 [Titov VN. Atherosclerosis as a pathology of polyene fatty acids. Biological basis of the theory of atherogenesis. М.:Foundation "Clinic of the XXI Century"; 2002:58-59 (In Russian)].
60. Mandon EC, de Gómez Dumm IN, de Alaníz MJ, Marra CA, Brenner RR. ACTH depresses delta 6 and delta 5 desaturation activity in rat adrenal gland and liver. J Lipid Res. 1987, 1377-83. https://pubmed.ncbi.nlm.nih.gov/2828499/ [accessed: 10.10.2023].
61. Trinder M, Wang Y, Madsen CM, et al. Inhibition of Cholesteryl Ester Transfer Protein Preserves High-Density Lipoprotein Cholesterol and Improves Survival in Sepsis. Circulation. 2021;143(9):921-934. DOI:10.1161/CIRCULATIONAHA.120.048568
62. Осочук С.С. Характеристика изменений липидного спектра плазмы крови больных аппендицитом мужчин разных возрастных периодов. Новости хирургии. 2005;13(1-4):19-22 [Osochuk S.S. Characteristics of changes in the lipid spectrum of blood plasma of men of different age groups with appendicitis. Surgery news. 2005;13(1-4):19-22 (In Russian)]. https://cyberleninka.ru/article/n/harakteristika-izmeneniy-lipidnogo-spektra-plazmy-krovi-bolnyh-appenditsitom-muzhchin-raznyh-vozrastnyh-periodov [дата доступа: 10.10.2023].
63. Титов В.Н. Белок, переносящий эфиры холестерина, физико-химические свойства, функция, роль в патогенезе атеросклероза и основания для ингибирования (лекция). Клиническая лабораторная диагностика. 2014:8:29-36 [Titov V.N. Cholesteryl ester transfer protein, physicochemical properties, function, role in the pathogenesis of atherosclerosis and reasons for inhibition (lecture). Clinical laboratory diagnostics. 2014:8:29-36 (In Russian)]. https://cyberleninka.ru/article/n/belok-perenosyaschiy-efiry-holesterina-fiziko-himicheskie-svoystva-funktsiya-rol-v-patogeneze-ateroskleroza-i-osnovaniya-dlya [дата доступа: 10.10.2023].
64. Dellinger RP, Tomayko JF, Angus DC, et al. Efficacy and safety of a phospholipid emulsion (GR270773) in Gram-negative severe sepsis: results of a phase II multicenter, randomized, placebo-controlled, dose-finding clinical trial. Crit Care Med. 2009;37(11):2929-2938. DOI:10.1097/CCM.0b013e3181b0266c
65. Yuan Y, Wu W, Sun S, Zhang Y, Chen Z. PCSK9: A Potential Therapeutic Target for Sepsis. J Immunol Res. 2020;2020:2687692. DOI:10.1155/2020/2687692
66. Boyd JH, Fjell CD, Russell JA, Sirounis D, Cirstea MS, Walley KR. Increased Plasma PCSK9 Levels Are Associated with Reduced Endotoxin Clearance and the Development of Acute Organ Failures during Sepsis. J Innate Immun. 2016;8(2):211-220. DOI:10.1159/000442976
67. Walley KR, Thain KR, Russell JA, et al. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med. 2014;6(258):258ra143. DOI:10.1126/scitranslmed.3008782
68. Jamialahmadi T, Panahi Y, Safarpour MA, et al. Association of Serum PCSK9 Levels with Antibiotic Resistance and Severity of Disease in Patients with Bacterial Infections Admitted to Intensive Care Units. J Clin Med. 2019;8(10):1742. DOI:10.3390/jcm8101742
69. Nakhaei P, Margiana R, Bokov DO, et al. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front Bioeng Biotechnol. 2021;9:705886. DOI:10.3389/fbioe.2021.705886
70. Биохимия : учебник. Под ред. Северина Е. С. Москва:ГЭОТАР- Медиа; 2019 [Biochemistry: textbook. Ed. Severina E. S. Moscow: GEOTAR-Media; 2019 (In Russian)].
71. Hwang WC, Seo SH, Kang M, Kang RH, Di Paolo G, Choi KY, Min DS. PLD1 and PLD2 differentially regulate the balance of macrophage polarization in inflammation and tissue injury. J Cell Physiol. 2021, 5193-5211. DOI: 10.1002/jcp.30224.
72. Noh JY, Lim KM, Bae ON, Chung SM, Lee SW, Joo KM, Lee SD, Chung JH. Procoagulant and prothrombotic activation of human erythrocytes by phosphatidic acid. Am J Physiol Heart Circ Physiol. 2010, DOI: 10.1152/ajpheart.01144.2009.
73. Hwang WC, Seo SH, Kang M, Kang RH, Di Paolo G, Choi KY, Min DS. PLD1 and PLD2 differentially regulate the balance of macrophage polarization in inflammation and tissue injury. J Cell Physiol. 2021, 5193-5211. DOI: 10.1002/jcp.30224.
74. Ефременко В.И. Влияние интактных бионаноструктур — липосом на биохимический и иммунологический статус организма. Журн. микробиол., 2015;(5):80-88 [Efremenko V.I. The influence of intact bionanostructures - liposomes on the biochemical and immunological status of the body. Journal. microbiol., 2015;(5):80-88 (In Russian)]. https://cyberleninka.ru/article/n/vliyanie-intaktnyh-bionanostruktur-liposom-na-biohimicheskiy-i-immunologicheskiy-status-organizma.pdf [дата доступа: 10.10.2023].
75. Уразов С.П., Чернов А.Н., Черкас А.В. и др. Секреторная фосфолипаза А2: биомаркер воспаления аутоиммунных, бактериальных и вирусных заболеваний. Медицинская иммунология. 2022;24(4):705-728 [Urazov S.P., Chernov A.N., Cherkas A.V. et al. Secretory phospholipase A2: a biomarker of inflammation in autoimmune, bacterial and viral diseases. Medical immunology. 2022;24(4):705-728 (In Russian)]. DOI: 10.15789/1563-0625-SPA-2460
76. Брагина Н.А., Чупин В.В., Булгаков В.Г., Шальнев А.Г. Липидные ингибиторы фосфолипазы А2. Биоорганическая химия. 1999;25(2):83-96 [Bragina N.A., Chupin V.V., Bulgakov V.G., Shalnev A.G. Lipid phospholipase A2 inhibitors. Bioorganic chemistry. 1999; 25(2):83-96 (In Russian)]. http://rjbc.ru/arc/25/2/0083-0096.pdf [дата доступа: 10.10.2023].
77. Subbaiah PV, Liu M, Paltauf F. Role of sn-2 acyl group of phosphatidylcholine in determining the positional specificity of lecithin-cholesterol acyltransferase. Biochemistry. 1994; 33(45):13259-13266. DOI:10.1021/bi00249a012
78. Reisinger AC, Schuller M, Sourij H, Stadler JT, Hackl G, Eller P, Marsche G. Impact of Sepsis on High-Density Lipoprotein Metabolism. Front Cell Dev Biol. 2022, 795460. DOI: 10.3389/fcell.2021.795460.
Supplementary files
Review
For citations:
Grigor’eva K., Osochuk S., Osochuk V. HYPOCHOLESTEROLEMIA IN SEPTIC CONDITIONS. MECHANISMS OF DEVELOPMENT AND WAYS OF CORRECTION. Baikal Medical Journal. 2023;2(4):33-45. (In Russ.) https://doi.org/10.57256/2949-0715-2023-4-33-45