CURRENT AND PROSPECTIVE APPROACHES TO THE TREATMENT OF TRAUMATIC BRAIN INJURIES
Abstract
Relevance. Traumatic brain injury remains one of the leading causes of disability and mortality in modern society, while existing treatment methods demonstrate limited effectiveness in preventing the development of secondary brain damage and the occurrence of delayed neurological complications. The lack of drugs with a complex multitarget effect on the main pathogenetic mechanisms of traumatic brain injury necessitates the search for new therapeutic approaches.
Aim of the study: to analyze current and promising approaches to the treatment of the consequences of traumatic brain injury, to identify the most promising areas.
Methods: a systematic review of the scientific literature, analysis of the results of preclinical and clinical studies on the use of various therapeutic approaches in traumatic brain injury, including standard intensive care, experimental neuroprotective drugs and cell therapy.
Results: it was found that the standard existing therapy for the consequences of traumatic brain injury is aimed primarily at maintaining vital functions and controlling intracranial pressure, but does not affect the key mechanisms of secondary brain tissue damage. Most experimental neuroprotective drugs have not demonstrated significant clinical efficacy. One of the most promising approaches to stimulating brain tissue neuroprotection and preventing the development of its secondary damage after traumatic brain injury is therapy with stem cells or their secretion products. The secretome of mesenchymal stromal cells, containing a wide range of biologically active molecules and molecular complexes, has a unique ability to affect a wide range of pathogenetic mechanisms that occur after traumatic brain injury. Recent advances in molecular and cellular biology (in particular, obtaining cell lines with prolonged proliferative potential) open up opportunities for clinical translation of this technology.
Conclusion: existing therapy for the consequences of traumatic brain injury has limited effectiveness and does not allow for the prevention of delayed damage to brain tissue. One of the most promising approaches to preventing the development of undesirable consequences of traumatic brain injury is therapy with stem cells or products of their secretion.
About the Authors
Yu. A. YursheRussian Federation
applicant, Department of Biochemistry and Regenerative Biomedicine;
hospital physician
V. A. Tkachuk
Russian Federation
Dr. Sci. (Biol.), Academician of the Russian Academy of Sciences; Director
M. N. Karagyaur
Russian Federation
Dr. Sci. (Biol.), Associate Professor of the Department of Biochemistry and Regenerative Biomedicine, Senior Researcher of the Center for Regenerative Medicine of the Medical Scientific and Educational Institute
References
1. Dewan M.C., Rattani A., Gupta S. et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1080-1097. https://doi.org/10.3171/2017.10.JNS17352
2. GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):56-87. https://doi.org/10.1016/S1474-4422(18)30415-0
3. Zhu X., Tao L., Tejima-Mandeville E. et al. Plasmalemma permeability and necrotic cell death phenotypes after intracerebral hemorrhage in mice. Stroke. 2012;43(2):524-531. https://doi.org/10.1161/STROKEAHA.111.635672
4. Menon D, Harrison D. Prognostic modelling in traumatic brain injury. BMJ. 2008;336(7641):397-398. https://doi.org/10.1136/bmj.39461.616991.80
5. Mishra R., Ucros H.E.V., Florez-Perdomo W.A. et al. Predictive value of Rotterdam score and Marshall score in traumatic brain injury: a contemporary review. Indian J Neurotrauma. 2022;19(02):069-077. https://doi.org/10.1055/s-0041-1727404
6. Butcher K.S., Baird T., MacGregor L. et al. Perihematomal edema in primary intracerebral hemorrhage is plasma derived. Stroke. 2004;35(8):1879-1885. https://doi.org/10.1161/01.STR.0000131807.54742.1A
7. Balami J.S., Buchan A.M. Complications of intracerebral haemorrhage. Lancet Neurol. 2012;11(1):101-118. https://doi.org/10.1016/S1474-4422(11)70264-2
8. Koliaraki V., Prados A., Armaka M., Kollias G. The mesenchymal context in inflammation, immunity and cancer. Nat Immunol. 2020;21(9):974-982. https://doi.org/10.1038/s41590-020-0741-2
9. Lu D., Xu Y., Liu Q., Zhang Q. Mesenchymal stem cell-macrophage crosstalk and maintenance of inflammatory microenvironment homeostasis. Front Cell Dev Biol. 2021;9:681171. https://doi.org/10.3389/fcell.2021.681171
10. Orr T.J., Lesha E., Kramer A.H. et al. Traumatic brain injury: a comprehensive review of biomechanics and molecular pathophysiology. World Neurosurg. 2024;185:74-88. https://doi.org/10.1016/j.wneu.2024.01.084
11. Chang C.F., Goods B.A., Askenase M.H. et al. Erythrocyte efferocytosis modulates macrophages towards recovery after intracerebral hemorrhage. J Clin Invest. 2018;128(2):607-624. https://doi.org/10.1172/JCI95612
12. Taran S., Pelosi P., Robba C. Optimizing oxygen delivery to the injured brain. Curr Opin Crit Care. 2022;28(2):145-156. https://doi.org/10.1097/MCC.0000000000000913
13. Wafaisade A., Lefering R., Tjardes T. et al. Trauma Registry of DGU. Acute coagulopathy in isolated blunt traumatic brain injury. Neurocrit Care. 2010;12(2):211-9. https://doi.org/10.1007/s12028-009-9281-1
14. Rao S.M., Harrington D.L., Haaland K.Y. et al. Distributed neural systems underlying the timing of movements. J Neurosci. 1997;17(14):5528-35. https://doi.org/10.1523/JNEUROSCI.17-14-05528.1997
15. Shin M.S., Park S.Y., Park S.R. et al. Clinical and empirical applications of the Rey-Osterrieth Complex Figure Test. Nat Protoc. 2006;1(2):892-9. https://doi.org/10.1038/nprot.2006.115
16. Algahtany M., Kumar A., Algahtany M. et al. Surgical intervention in traumatic brain injury: a systematic review and meta-analysis of decompressive craniotomy. Eur J Trauma Emerg Surg. 2025;51(1):30. https://doi.org/10.1007/s00068-024-02725-2
17. Хирургия тяжелой черепно-мозговой травмы. Под общей редакцией В.В. Крылова, А.Э. Талыпова, А.А. Гриня, О.В. Левченко. 2-е издание, дополненное. Москва: Издательский дом «АБВ-пресс»; 2022: 877 [Surgery of severe traumatic brain injury. General editors: V. V. Krylov, A. E. Talypov, A. A. Grinya, O. V. Levchenko. 2nd edition, supplemented. Moscow: Publishing house "ABV-press"; 2022: 877 (In Russian)].
18. Godoy D.A., Murillo-Cabezas F., Suarez JI. et al. "THE MANTLE" bundle for minimizing cerebral hypoxia in severe traumatic brain injury. Crit Care. 2023;27(1):1-8. https://doi.org/10.1186/s13054-022-04242-3.
19. Bao L., Chen D., Ding L. et al. Fever burden is an independent predictor for prognosis of traumatic brain injury. PLoS One. 2014;9(3):e90956. https://doi.org/10.1371/journal.pone.0090956.
20. Клинические рекомендации МЗ РФ 2022. Очаговая травма головного мозга [Clinical guidelines of the Ministry of Health of the Russian Federation 2022. Focal brain injury (In Russian)]. URL: https://cr.minzdrav.gov.ru/preview-cr/732_1 [access date: 29.08.2025]
21. Godoy D.A., Lubillo S., Rabinstein A.A. Pathophysiology and management of intracranial hypertension and tissular brain hypoxia after severe traumatic brain injury: an integrative approach. Neurosurg Clin N Am. 2018;29(2):195-212. https://doi.org/10.1016/j.nec.2017.12.001
22. Крылов В.В., Петриков С.С., Рамазанов Г.Р., Солодов А.А. Нейрореаниматология: практическое руководство. 2-е изд., перераб. и доп. Москва: ГЭОТАР-Медиа; 2019:171 [Krylov V.V., Petrikov S.S., Ramazanov G.R., Solodov A.A. Neuroresuscitation: a practical guide. 2nd ed., revised. and additional Moscow: GEOTAR-Media; 2019:171 (In Russian)].
23. Taran S., Pelosi P., Robba C. Optimizing oxygen delivery to the injured brain. Curr Opin Crit Care. 2022;28(2):145-156. https://doi.org/10.1097/MCC.0000000000000913
24. Chesnut R.M., Videtta W. Situational intracranial pressure management: an argument against a fixed treatment threshold. Crit Care Med. 2020;48(8):1214-1216. https://doi.org/10.1097/CCM.0000000000004395
25. Rauch S., Marzolo M., Cappello T.D. et al. Severe traumatic brain injury and hypotension is a frequent and lethal combination in multiple trauma patients in mountain areas – an analysis of the prospective international Alpine Trauma Registry. Scand J Trauma Resusc Emerg Med. 2021;29(1):1-10. https://doi.org/10.1186/s13049-021-00879-1
26. Godoy D.A., Behrouz R., Napoli M.Di. Glucose control in acute brain injury: does it matter? Curr Opin Crit Care. 2016;22(2):120-127. https://doi.org/10.1097/MCC.0000000000000292
27. Robba C., Poole D., McNett M. et al. Mechanical ventilation in patients with acute brain injury: recommendations of the European Society of Intensive Care Medicine consensus. Intensive Care Med. 2020;46(12):2397-2410. https://doi.org/10.1007/s00134-020-06283-0
28. Трембач Н.В., Заболотских И.Б., Стаканов А.В., Ярошецкий А.И. Протективная вентиляция легких в абдоминальной хирургии. Анестезиология и реаниматология. 2018;(3):25 [Trembach N.V., Zabolotskih I.B., Stakanov A.V., Yaroshetsky A.I. Protective lung ventilation in abdominal surgery. Anesthesiology and Resuscitation. 2018;(3):25 (In Russian)]. https://doi.org/10.17116/anaesthesiology201803125
29. Acute Respiratory Distress Syndrome Network, Brower R.G., Matthay M.A. et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-1308. https://doi.org/10.1056/NEJM200005043421801
30. Bulger E.M., May S., Brasel K.J. et al. Out-of-hospital hypertonic resuscitation following severe traumatic brain injury: a randomized controlled trial. JAMA. 2010;304(13):1455-1464. https://doi.org/10.1001/JAMA.2010.1405
31. Zafonte R.D., Bagiella E., Ansel B.M. et al. Effect of citicoline on functional and cognitive status among patients with traumatic brain injury: Citicoline Brain Injury Treatment Trial (COBRIT). JAMA. 2012;308(19):1993-2000. https://doi.org/10.1001/JAMA.2012.13256
32. Nichol A., French C., Little L. et al. Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet. 2015;386(10012):2499-2506. https://doi.org/10.1016/S0140-6736(15)00386-4
33. Hasan G.M., Anwar S., Shamsi A. et al. The neuroprotective potential of phytochemicals in traumatic brain injury: mechanistic insights and pharmacological implications. Front Pharmacol. 2023;14:1330098. https://doi.org/10.3389/fphar.2023.1330098
34. Zhao Q., Li H., Li H., Zhang J. Research progress on pleiotropic neuroprotective drugs for traumatic brain injury. Front Pharmacol. 2023;14:1185533. https://doi.org/10.3389/fphar.2023.1185533
35. Maas A.I., Stocchetti N., Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728-741. https://doi.org/10.1016/S1474-4422(08)70164-9
36. Susanto M., Pangihutan Siahaan A.M., Wirjomartani B.A. et al. The neuroprotective effect of statin in traumatic brain injury: a systematic review. World Neurosurg X. 2023;19:100211. https://doi.org/10.1016/j.wnsx.2023.100211
37. Komoltsev I.G., Gulyaeva N.V. Brain trauma, glucocorticoids and neuroinflammation: dangerous liaisons for the hippocampus. Biomedicines. 2022;10(5):1139. https://doi.org/10.3390/biomedicines10051139.
38. Mugenyi N., Sakaiwa N., Darko K. et al. Assessing the neuroprotective efficacy of atorvastatin in traumatic brain injury: a systematic review protocol. J Surg Protoc Res Methodol. 2023;2023(3):1-4. https://doi.org/10.1093/jsprm/snad011
39. Dzhauari S., Basalova N., Primak A. et al. The secretome of mesenchymal stromal cells in treating intracerebral hemorrhage: the first step to bedside. Pharmaceutics. 2023;15(6):1608. https://doi.org/10.3390/pharmaceutics15061608
40. Karagyaur M., Dzhauari S., Basalova N. et al. MSC secretome as a promising tool for neuroprotection and neuroregeneration in a model of intracerebral hemorrhage. Pharmaceutics. 2021;13(12):2031. https://doi.org/10.3390/pharmaceutics13122031
41. Hasan A., Deeb G., Rahal R. et al. Mesenchymal stem cells in the treatment of traumatic brain injury. Front Neurol. 2017;8:28. https://doi.org/10.3389/fneur.2017.00028
42. Cui L., Saeed Y., Li H., Yang J. Regenerative medicine and traumatic brain injury: from stem cell to cell-free therapeutic strategies. Regen Med. 2022;17(1):37-53. https://doi.org/10.2217/rme-2021-0069
43. Maguire G. Stem cell therapy without the cells. Commun Integr Biol. 2013;6(6). https://doi.org/10.4161/cib.26631
44. Vizoso F.J., Eiro N., Cid S. et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017;18(9):1852. https://doi.org/10.3390/ijms18091852
45. Efimenko A., Sagaradze G., Akopyan Z. et al. Data supporting that miR-92a suppresses angiogenic activity of adipose-derived mesenchymal stromal cells by down-regulating hepatocyte growth factor. Data Brief. 2016;6:295-310. https://doi.org/10.1016/j.dib.2015.12.021
46. Kalinina N., Kharlampieva D., Loguinova M. et al. Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes. Stem Cell Res Ther. 2015;6:221. https://doi.org/10.1186/s13287-015-0209-8
47. Harrell C.R., Fellabaum C., Jovicic N. et al. Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells. 2019;8(5):467. https://doi.org/10.3390/cells8050467
48. Vishnubhatla I., Corteling R., Stevanato L. et al. The development of stem cell-derived exosomes as a cell-free regenerative medicine. J Circ Biomark. 2014;3(1):1-14. https://doi.org/10.5772/58597
49. Dzhauari S., Basalova N., Primak A.L. et al. The secretome of mesenchymal stromal cells in treating intracerebral hemorrhage: the first step to bedside. Pharmaceutics. 2023;15:1608. https://doi.org/10.3390/pharmaceutics15061608
50. MRC CRASH Trial Collaborators, Perel P., Arango M. et al. Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. BMJ. 2008;336(7641):425-429. https://doi.org/10.1136/bmj.39461.643438.25
51. Moore E.E., Moore H.B., Kornblith L.Z. et al. Trauma-induced coagulopathy. Nat Rev Dis Primers. 2021;7(1):30. https://doi.org/10.1038/s41572-021-00264-3
52. Pischiutta F., Caruso E., Cavaleiro H. et al. Mesenchymal stromal cell secretome for traumatic brain injury: focus on immunomodulatory action. Exp Neurol. 2022;357:114199. https://doi.org/10.1016/j.expneurol.2022.114199
53. Samsonraj R.M., Law S.F., Chandra A., Pignolo R.J. An unbiased proteomics approach to identify the senescence-associated secretory phenotype of human bone marrow-derived mesenchymal stem cells. Bone Rep. 2023;18:101674. https://doi.org/10.1016/j.bonr.2023.101674
54. Coppé J.P., Desprez P.Y., Krtolica A., Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99-118. https://doi.org/10.1146/annurev-pathol-121808-102144
55. Primak A., Kalinina N., Skryabina M. et al. Novel immortalized human multipotent mesenchymal stromal cell line for studying hormonal signaling. Int J Mol Sci. 2024;25(4):2421. https://doi.org/10.3390/ijms25042421
56. Примак А.Л., Калинина Н.И., Скрябина М.Н. и др. Создание и характеристика культур мезенхимных стромальных клеток человека с пролонгированным пролиферативным потенциалом для задач регенеративной медицины. Регенерация органов и тканей. 2024;2(2):24-45 [Primak A.L., Kalinina N.I., Skryabina M.N. et al. Creation and characterization of human mesenchymal stromal cell cultures with prolonged proliferative potential for regenerative medicine tasks. Regeneration of Organs and Tissues. 2024;2(2):24-45 (In Russian)]. https://doi.org/10.60043/2949-5938-2024-2-24-45
57. Dzhauari S.S., Primak A.L., Basalova N.A. et al. Overexpression of BDNF and uPA combined with the suppression of Von Hippel–Lindau tumor suppressor enhances the neuroprotective activity of the secretome of human mesenchymal stromal cells in the model of intracerebral hemorrhage. Int J Mol Sci. 2025;26(14):6697. https://doi.org/10.3390/ijms26146697
Review
For citations:
Yurshe Yu.A., Tkachuk V.A., Karagyaur M.N. CURRENT AND PROSPECTIVE APPROACHES TO THE TREATMENT OF TRAUMATIC BRAIN INJURIES. Baikal Medical Journal. 2025;4(3).