ОЦЕНКА ГЕНОТОКСИЧЕСКОГО ВОЗДЕЙСТВИЯ МИТОМИЦИНА С НА ПРИМЕРЕ АроЕ-НОКАУТНЫХ МЫШЕЙ

Асанов М.А., Синицкий М.Ю.

ФГБНУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Россия

ВВЕДЕНИЕ

Митомицин С (ММС) обладает широким спектром генотоксичности, включая ингибирование синтеза ДНК, кластогенеза и мутагенеза. Как кластоген немедленного действия, требующий исключительно внутриклеточной восстановительной активации, ММС инициирует эффективное сшивание ДНК. Большинство исследований направлено на изучение одномоментного острого воздействия, что обуславливается высокими дозами мутагена. В свою очередь исследований, направленных на изучение хронического воздействия ММС, нет или их крайне мало. Полихромные эритроциты были приняты в качестве подходящей мишени для оценки микроядер (МЯ) как при остром, так и при кумулятивном повреждении. Микроядерный тест *in vivo* хорошо зарекомендовал себя как стандартный анализ для оценки генотоксичности на хромосомном уровне эритроцитов мышей.

ЦЕЛЬ ИССЛЕДОВАНИЯ

Создание хронического генотоксического воздействия ММС без летального исхода АроЕнокаутных мышей при подборе оптимальной дозы ММС.

МАТЕРИАЛЫ И МЕТОДЫ

Дизайн исследования включал 6 групп АроЕ—/—-мышей, две дозы ММС с концентрацией 0,1 и 0,5 мг/кг, одноразовое и трёхразовое введение. Для оценки генотокичности на каждом образце подсчитывали 1000 полихромных эритроцитов (ПХЭ), извлечённых из костного

мозга бедренной кости мыши, выявляли ПХЭ с МЯ.

РЕЗУЛЬТАТЫ

Данное исследование направлено на поиск оптимальной дозы ММС, имеющей явное генотоксическое воздействие и не приводящей к летальному исходу на модели мышей, нокаутных по гену ApoE. При однократном введении ПХЭ с хромосомными повреждениями чаще (более чем в 2 раза; p < 0.05) встречались в группах мышей с ММС (0,1 и 0,5 мг/кг; 0,39 % и 0,26 % соответственно) по сравнению с контрольной группой (0,15 %). Также нами было установлено, что частота встречаемости ПХЭ с МЯ в группах мышей с дозой 0,1 и 0,5 мг/кг (0,36 % и 0,47 % соответственно) и трёхразовым введением превышала данный показатель у мышей из контрольной группы (0,2 %).

ЗАКЛЮЧЕНИЕ

Настоящее исследование по определению оптимальной дозы представляет дополнительные доказательства того, что 0,1 мг/кг является пороговым значением генотоксического эффекта, вызванного ММС. Повышение частоты микроядерных незрелых эритроцитов у животных, подвергшихся воздействию мутагена, является показателем индуцированных структурных или численных хромосомных аберраций. Наши результаты дополнительно показывают, что тщательный выбор дозы ММС имеет решающее значение. Исследования «доза — реакция» на грызунах могут предоставить полезную информацию о механизмах и выборе дозы для долгосрочных исследований токсичности.

ASSESSMENT OF THE GENOTOXIC EFFECTS OF MITOMYCIN C ON THE EXAMPLE OF ApoE KNOCKOUT MICE

Asanov M.A., Sinitsky M.Yu.

Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia

BACKGROUND

Mitomycin C (MMC) has a wide spectrum of genotoxicity, including inhibition of DNA synthesis, clastogenesis and mutagenesis. As an immediate-action clastogen requiring exclusively intracellular reductive activation, MMC initiates efficient DNA cross-linking. Most studies are aimed at studying single-stage acute effects, which are caused by high doses of mutagen. In turn, there are no or very few studies aimed at studying the chronic effects of MMC. Polychrome red blood cells have been accepted as a suitable target for the evaluation of micronuclei in both acute and cumulative injury. The *in vivo* micronucleus test is well established as a standard assay for assessing genotoxicity at the chromosomal level of mouse erythrocytes.

THE AIM OF THE STUDY

To create a chronic genotoxic effect of mitomycin C without lethal outcome in ApoE knockout mice while selecting the optimal dose of MMC.

MATERIALS AND METHODS

The study design included 6 groups of ApoE^{-/-} mice, two doses of MMC with a concentration of 0.1 and 0.5 mg/kg, one-time and three-time administration. To assess genotoxicity, 1000 polychrome erythrocytes (PCEs) extracted from the bone marrow of a mouse

femur were counted on each sample, and PCEs with micronuclei were identified.

RESULTS

This study aimed to find the optimal dose of MMC that has a clear genotoxic effect and does not lead to death in an ApoE knockout mouse model. With a single injection, PCEs with chromosomal damage were more common (more than 2 times; p < 0.05) in groups of mice with MMC administration (0.1 and 0.5 mg/kg; 0.39 % and 0.26 %, respectively) compared to the control group (0.15 %). We also found that the frequency of occurrence of PCEs with micronuclei in groups of mice with MMC dose of 0.1 and 0.5 mg/kg (0.36 % and 0.47 %, respectively) and three-time administration exceeded this indicator in mice from the control group (0.2 %).

CONCLUSION

The present study on the determination of the optimal dose of mitomycin C provides further evidence that 0.1 mg/kg is the threshold value for genotoxic effects caused by MMC. An increase in the frequency of micronucleated immature red blood cells in animals exposed to a mutagen is an indicator of induced structural or numerical chromosomal aberrations. Our results further suggest that careful selection of MMC dose is critical. Dose-response studies in rodents can provide useful information on mechanisms and dose selection for long-term toxicity studies.

Для цитирования: Асанов М.А., Синицкий М.Ю. Оценка генотоксического воздействия митомицина С на примере АроЕ-нокаутных мышей. *Байкальский медицинский журнал.* 2023; 2(3): 21-22. doi: 10.57256/2949-0715-2023-2-3-21-22

For citation: Asanov M.A., Sinitsky M.Yu. Assessment of the genotoxic effects of mitomycin C on the example of ApoE knockout mice. *Baikal Medical Journal*. 2023; 2(3): 21-22. doi: 10.57256/2949-0715-2023-2-3-21-22